АСТРОНОМИЯ И АСТРОФИЗИКА: ЭПОХА НЬЮТОНА - definição. O que é АСТРОНОМИЯ И АСТРОФИЗИКА: ЭПОХА НЬЮТОНА. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é АСТРОНОМИЯ И АСТРОФИЗИКА: ЭПОХА НЬЮТОНА - definição

Приоритетный спор Ньютона и Лейбница
  • Движение тел по различным траекториям. Красная линия — [[брахистохрона]]
  • Дифференциальный треугольник Паскаля
  • Готфрид Вильгельм Лейбниц, портрет ок. 1710 года
  • Дж. Торнхилла]]
  • Первая страница статьи Г. В. Лейбница «Nova Methodus pro Maximis et Minimis», [[Acta Eruditorum]], 1684 год
  • S=21}}. Иллюстрация из рукописи начала XV века.
  • Oxford University Museum of Natural History}}, коллаж

АСТРОНОМИЯ И АСТРОФИЗИКА: ЭПОХА НЬЮТОНА      
К статье АСТРОНОМИЯ И АСТРОФИЗИКА
Ньютон и гравитация. Замена небесных сфер Аристотеля кеплеровым движением планет по эллиптическим орбитам выдвинула на передний план вопрос о силах, удерживающих планеты на орбитах. Французский философ и математик Р.Декарт (1596-1650) предположил, что все пространство между телами заполнено тончайшей материей. Вихри этого вещества удерживают планеты на их орбитах, а все взаимодействия передаются путем прямого контакта. См. также ДЕКАРТ, РЕНЕ.
В конце 1600-х годов в научных кругах Англии стали обсуждаться альтернативные теории тяготения. Поскольку было известно, что свет ослабляется пропорционально квадрату расстояния, несколько английских ученых, включая Э.Галлея (1656-1743), Р.Гука (1635-1702) и К.Рена (1632-1723), предположили, что могла бы существовать некая подобная сила взаимного притяжения тел. Ни один из них, однако, не дал математического решения этой проблемы. См. также ГАЛЛЕЙ, ЭДМУНД; ГУК, РОБЕРТ; РЕН, КРИСТОФЕР.
В 1684 Галлей посетил И.Ньютона (1643-1727), чтобы обсудить проблему тяготения, и, увидев, что тот близок к ее решению, настоял на ускорении работ. Следующие три года Ньютон при поддержке Галлея почти непрерывно трудился над этой проблемой. Объединив исследования Галилея над падающими на Земле телами и кеплеровы законы планетных движений, Ньютон создал строгую теорию тяготения, действительно объединившую Солнце, Землю и планеты в единую систему.
Ньютон изложил свои открытия в Математических началах натуральной философии (Philosophiae naturalis principia mathematica, 1687). Все наблюдаемые в Солнечной системе явления выводились в книге Ньютона с математической точностью из нескольких основных принципов и закона всемирного тяготения.
Книга I - математическое описание движения свободного тела под влияние действующих на него сил - утверждает новые принципы механики. Она начинается с определения того, что теперь называют инерцией, массой и импульсом, а затем формулирует три знаменитых ньютоновых закона движения.
Книга II - о движении тел в среде с сопротивлением - в основном опровергает теорию вихрей Декарта.
В Книге III Ньютон применяет свою теорию гравитации фактически ко всем телам Солнечной системы - к планетам, Луне и другим спутникам, к кометам, - для которых имелись точные наблюдения. Ньютон продемонстрировал путем вычислений, что заметное отклонение Сатурна от эллиптической орбиты при его сближении с Юпитером происходит под действием притяжения к массивному Юпитеру. Он показал также, что многие неправильности в движении Луны вокруг Земли вызваны их различным притяжением к Солнцу, изменяющимся в ходе орбитального движения Луны.
Он попытался объяснить прецессию, или предварение равноденствия - известное с античности медленное (50??) перемещение точек равноденствия по эклиптике навстречу годовому движению Солнца. Это небесное явление происходит потому, что ось вращения Земли медленно прецессирует, совершая конусообразный оборот вокруг полюса эклиптики примерно за 26 000 лет. Причиной прецессии Ньютон считал возмущающее влияние Солнца на экваториальное вздутие Земли. Результат его расчетов оказался в прекрасном согласии с астрономическими наблюдениями.
Математическая теория всемирного тяготения оказалась чрезвычайно эффективной, дав количественное объяснение наблюдениям, на что неспособна была теория вихрей Декарта. См. также ТЯГОТЕНИЕ; НЬЮТОН, ИСААК.
Развитие теории в 18 в. Неразрешимое противоречие между понятием о тяготении и действием сил на расстоянии крайне затрудняло распространение теории Ньютона. Тем не менее, в собственной стране он прошел путь от одинокого эксцентричного профессора Тринити-колледжа в Кембридже до президента Лондонского королевского общества (1703-1727). Хотя и медленно, его математические теории пускали корни.
Сам Ньютон не мог объяснить особенностей движения всех членов Солнечной системы. Невозможно было точно аналитически решить задачу о движении уже трех взаимно притягивающихся тел. Даже приближенное ее решение требовало месяцев и годов кропотливых вычислений. Поколение талантливых континентальных, в первую очередь французских, математиков - таких, как А.Клеро (1713-1765), Ж. д'Аламбер (1717-1783), Л.Эйлер (1707-1783), Ж.Лагранж (1736-1813) и П.де Лаплас (1749-1827), - успешно разрешило, в большей или меньшей степени, ряд проблем, касающихся движения тел в Солнечной системе, применяя и развивая ньютонову теорию возмущений. См. также Д'АЛАМБЕР, ЖАН ЛЕРОН; ЭЙЛЕР, ЛЕОНАРД; ЛАГРАНЖ, ЖОЗЕФ ЛУИ; ЛАПЛАС, ПЬЕР СИМОН.
Движение Луны. Ньютон нашел движение Луны особенно запутанным. В частности, его геометрический анализ положения апсид лунной орбиты, основанный на теории тяготения и приведенный в Началах, выявил только половину их наблюдаемого перемещения. Однако в 1749 Клеро продвинул анализ до более высоких степеней приближения, и результат в точности совпал с наблюдениями. Этим было доказано, что закон обратных квадратов способен объяснить не только общее движение планет и спутников по эллиптическим орбитам, но и отклонения от него, особенно сильные в случае Луны.
Движение комет. Ньютон разработал довольно громоздкий - частично арифметический, частично графический - метод вычисления орбиты кометы по нескольким наблюдениям. Применив его к кометам 1680 и 1681 годов, он предположил в Началах, что это, по-видимому, была одна и та же комета (наблюдавшаяся до и после прохождения перигелия, когда она временно скрывалась за Солнцем) и, более того, что она повинуется тем же законам динамики, что и прочие тела Солнечной системы.
Галлей в 1690-х годах, изучив старые записи о появлении комет и уточнив метод расчета, определил орбитальные элементы 24 комет, наблюдавшихся между 1337 и 1698. Заметив схожесть орбит у комет 1531, 1607 и 1682, а также приблизительно одинаковые промежутки времени (75-76 лет) между их появлением вблизи Солнца, он заключил, что это тоже была одна и та же комета и что вариации периода вызваны гравитационными возмущениями со стороны Юпитера и Сатурна. Он предсказал ее следующее появление в 1758. В конце 1750-х годов Клеро предпринял детальный анализ возмущений и показал, что комета должна достичь перигелия в середине апреля 1759 с ошибкой не более месяца. Когда комета с соответствующими орбитальными элементами (впоследствии названная кометой Галлея) была обнаружена 25 декабря 1758 и прошла через перигелий 13 марта 1759, астрономы расценили это событие как еще один триумф ньютоновой теории тяготения.
Устойчивость Солнечной системы. Ньютон полагал, что неправильности в движении Юпитера и Сатурна в период их соединения можно учесть с помощью теории возмущений. Однако вычисление поправок к планетным таблицам для их соответствия наблюдениям показало, что орбита Юпитера понемногу увеличивается, а Сатурна - уменьшается. Это вызвало большой интерес к долговременной устойчивости планетной системы. Только в 1784 П.де Лаплас окончательно доказал, что эти изменения носят циклический характер с периодом около 900 лет. В расчетных формулах они связаны с малыми членами высокого порядка, которые лишь изредка возрастают до значимых величин. Эти неправильности, заставившие сначала сомневаться в применимости теории Ньютона, стали теперь доказательством ее справедливости. Теория движения Юпитера и Сатурна оказалась в согласии со всеми наблюдениями вплоть до античных, и никаких специальных поправок к таблицам больше не требовалось.
Лаплас увенчал 18 в. развитием ньютоновой теории тяготения в своем пятитомном Трактате о небесной механике (Trait de mchanique cleste, 1799-1825). Предполагая, что все тела наделены тяготением, Лаплас утверждал, что если заданы начальные условия системы - положение и скорость каждого небесного тела в начальный момент времени, - то вся будущая эволюция мира вполне определена и может быть вычислена. Он наглядно продемонстрировал это, рассчитав различные возмущения планетной системы на сотни тысяч лет в прошлое и будущее. Основываясь только на теории тяготения, он вычислил движение Луны с точностью до 0,5?. Используя те члены в теории Луны, которые зависят от сжатия Земли, он определил длину градуса широты, весьма точно совпавшую с результатами различных экспедиций, организованных французским правительством. Другие члены в уравнениях зависели от параллакса Солнца, который он рассчитал в хорошем согласии с наблюдательными данными экспедиций, посланных в различные уголки Земли для наблюдения редкого прохождения Венеры по диску Солнца в 1761 и 1769. (Измерение параллакса Солнца дает расстояние Земли от Солнца и позволяет установить точную шкалу расстояний в Солнечной системе.) Исследования Лапласа показали, что все планетные и лунные возмущения, проанализированные совместно, не нарушают долговременной устойчивости системы. В основном они периодические и взаимосвязанные: одно нейтрализует другое.
Небулярная гипотеза. Лаплас создал еще одну синтетическую концепцию - свою космогоническую идею о совместном происхождении и развитии Солнца и всех планет. Согласно этой небулярной гипотезе (лат. nebula - туманность), Солнечная система возникла, когда обширная атмосфера молодого Солнца, остывая, сжимаясь и вращаясь от этого все быстрее, породила серию газовых колец в экваториальной плоскости Солнца. Затем каждое кольцо под действием тяготения собралось; подобный же процесс привел к формированию спутников. Так от теории возмущений, рассматривавшей кратковременную эволюцию орбитальных элементов, произошел переход к гораздо большим историческим масштабам. Небулярная гипотеза соперничала с другими теориями, предполагавшими катастрофическое происхождение Солнечной системы в результате столкновения кометы с Солнцем. Гипотеза Лапласа намного лучше гармонировала с ньютоновским духом века Просвещения, предполагавшим последовательное движение Вселенной, возникшей по милости Господа, давшего своему изумительному творению первичный толчок и позволившего ему в дальнейшем развиваться по законам природы. См. также СОЛНЕЧНАЯ СИСТЕМА
.
Усовершенствование телескопа. Астрономы ньютоновской эпохи интересовались и открывшимся им миром объектов за пределами Солнечной системы. Однако предложенный Галилеем телескоп-рефрактор был труден в изготовлении. Нелегко отлить прозрачную и свободную от дефектов стеклянную заготовку, а затем обточить и отполировать ее точно по сфере. Эти проблемы ограничивали размер объектива. К тому же, проходя через линзы, лучи разного цвета отклоняются немного по-разному и не собираются в одном фокусе; это вызывает хроматическую аберрацию, делающую изображения нечеткими, окруженными цветным ореолом.
В конце 1660-х годов этим явлением заинтересовался и молодой Ньютон, поглощенный тогда исследованием света и цвета. В представленном Королевскому обществу в 1671 телескопе нового типа вместо линзового объектива он использовал параболическое зеркало, также собирающее свет в точку. Изготавливать зеркало из металла было значительно проще, чем равную ему по размеру линзу; зеркало можно было сделать намного большего диаметра. Отражательный телескоп, названый рефлектором, стал популярен. Появились книги с описанием его изготовления, что вызвало рост числа астрономов-любителей.
Первым астрономом, полностью раскрывшим возможности рефлектора, стал В.Гершель (1738-1822). Перебравшись в 1757 из Ганновера (Германия) в Англию, он осел в Бате и увлекся астрономией. В 1770-х годах он решил собственноручно построить телескоп из доступных материалов по опубликованному описанию. Работая терпеливо и упорно, он сделал несколько ньютоновских телескопов вплоть до диаметра 46 см и фокусного расстояния 6 м. Высокое качество его зеркал позволило использовать при наблюдениях чрезвычайно сильное увеличение, такое большое, что астрономическая общественность Гринвича и Лондона даже не поверила в это.
Открытие Урана. В ходе систематического обзора всех звезд ярче 8-й величины Гершель 13 марта 1781 обнаружил в созвездии Тельца очень яркий объект, который он вначале принял за комету, поскольку диаметр видимого диска возрастал вместе с увеличением телескопа и было заметно движение на фоне звезд примерно на 1. в сутки. После нескольких месяцев наблюдений вычисления Гершеля и других ученых показали, что объект движется вокруг Солнца по почти круговой орбите далеко за Сатурном (почти в 19 раз дальше, чем Земля от Солнца) и поэтому является новой планетой; позже она получила имя Уран. За это открытие король Георг III пожаловал Гершелю ежегодную пенсию в 200 фунтов, которая, вместе с доходом от строительства и продажи телескопов, позволила ему посвятить большую часть времени астрономии. Ньютоновская теория тяготения получила новое подтверждение, поскольку движение Урана по орбите вполне согласовалось с этой теорией.
Обзор звезд. Но поиск планет не был главным интересом Гершеля. Доведя свои инструменты до высочайшего качества и огромной оптической мощности, он предпринял систематический обзор двойных звезд, надеясь обнаружить физически близкие пары и определить расстояние до них методом параллакса. Подобно другим ученым эпохи Просвещения, изучавшим различные типы растений и животных и их распределение в природе, Гершель надеялся путем систематического обзора звезд создать "естественную историю" неба.
Он разработал изощренную космогоническую схему, связавшую все наблюдаемые объекты в единую эволюционную последовательность. Еще Птолемей отмечал размытое пятнышко света в созвездии Андромеды, а телескоп показал множество таких пятнышек и компактных звездных скоплений. К 1770-м годам в каталогах было около 90 туманностей и скоплений. Неутомимый Гершель с помощью своих больших рефлекторов обнаружил их еще 2500. Он, как и некоторые его современники, в соответствии с традициями гравитационной астрономии и небулярной гипотезы 18 в. считал, что разреженные туманности должны под действием гравитации постепенно сжиматься, превращаясь в плотные скопления звезд. Исходя из наблюдаемой яркости туманностей и их схожести с кометными хвостами, Гершель и другие астрономы полагали, что это самосветящееся вещество, подобное атмосфере Солнца. Спиральная форма некоторых туманностей (позже отождествленных с галактиками), казалось, указывала на их сжатие. Считалось, что некоторые туманности, захваченные гравитационным полем существующих звезд, становятся кометами, которые при удачном соударении с центральной звездой могут конденсироваться в планеты. См. также ГЕРШЕЛЬ, ВИЛЬЯМ.
Огромная работа Гершеля по подсчету звезд позволила ему получить наблюдательное подтверждение сделанного ранее (1750) Т.Райтом (1711-1786) предположения, что звезды не рассыпаны в пространстве хаотически, а образуют вращающийся диск. У.Парсонс (1800-1867) продолжил усилия Гершеля по разработке крупных рефлекторов. Его Левиафан - телескоп диаметром 1,8 м, установленный в семейном поместье Бирр-Кастл в Ирландии, - позволил Парсонсу разрешить на звезды многие туманности и впервые определенно установить спиральную форму некоторых из них.
Колыбель Ньютона         
  • При отклонениях различного количества шариков
МЕХАНИЧЕСКАЯ СИСТЕМА ДЛЯ ДЕМОНСТРАЦИИ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ РАЗЛИЧНЫХ ВИДОВ ДРУГ В ДРУГА
Маятник ньютона; Шарики Ньютона; Маятник Ньютона
Колыбе́ль Ньютона (маятник Ньютона) — названная в честь Исаака Ньютона механическая система, предназначенная для демонстрации преобразования энергии различных видов друг в друга: кинетической в потенциальную и наоборот. В отсутствие противодействующих сил (трения) система могла бы действовать вечно, но в реальности это недостижимо.
Ньютона законы механики         
  • Страница «Начал» Ньютона с аксиомами механики
ТРИ ОСНОВНЫЕ АКСИОМЫ КЛАССИЧЕСКОЙ МЕХАНИКИ
Ньютоновские уравнения; Ньютона законы механики; Законы механики Ньютона; Закон действия и противодействия; 3-й закон Ньютона

три закона, лежащие в основе т. н. классической механики (См. Механика). Сформулированы И. Ньютоном (1687). Первый закон: "Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние". Второй закон: "Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует". Третий закон: "Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны".

Н. з. м. появились как результат обобщения многочисленных наблюдений, опытов и теоретических исследований Г. Галилея, Х. Гюйгенса, самого Ньютона и др.

Согласно современным представлениям и терминологии, в первом и втором законах под телом следует понимать материальную точку (См. Материальная точка), а под движением - движение относительно инерциальной системы отсчёта (См. Инерциальная система отсчёта). Математическое выражение второго закона в классической механике имеет вид: или mω = F, где m - масса точки, υ - её скорость, a ω - ускорение, F - действующая сила (см. Динамика).

Н. з. м. перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света. См. Квантовая механика, Относительности теория.

Лит.: Галилей Г., Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению. Соч., [пер. с лат.], т. 1, М. - Л., 1934; Ньютон И., Математические начала натуральной философии, пер. с лат., в кн.: Крылов А. Н., Собр. трудов, т. 7, М. - Л., 1936, См. также лит. при ст. Механика.

С. М. Тарг.

Wikipédia

Спор Ньютона и Лейбница о приоритете

Спор Ньютона и Лейбница о приоритете (англ. Leibniz–Newton calculus controversy, нем. Prioritätsstreit) — спор о приоритете открытия дифференциального и интегрального исчисления между Исааком Ньютоном (1642—1727) и Готфридом Вильгельмом Лейбницем (1646—1716). Свою версию теории Ньютон создал ещё в 1665—1666 годах, однако не публиковал её до 1704 года. Независимо от него Лейбниц разработал свой вариант дифференциального исчисления (с 1675 года), хотя первоначальный толчок, вероятно, его мысль получила из слухов о том, что такое исчисление у Ньютона уже имеется, а также благодаря научным беседам в Англии и переписке с Ньютоном. В отличие от Ньютона, Лейбниц сразу опубликовал свою версию и в дальнейшем, вместе с Якобом и Иоганном Бернулли, широко пропагандировал это открытие по всей Европе. Большинство учёных на континенте не сомневались, что анализ открыл Лейбниц. Когда Ньютон решил опубликовать свои труды на эту тему, возник вопрос о приоритете совершённого открытия. Ожесточённый спор не завершился со смертью Лейбница и продолжался усилиями сторонников основных участников, прекратившись только со смертью Ньютона.

Полярные точки зрения по поводу приоритета Ньютона или Лейбница высказывались историками математики вплоть до начала XX века. С середины прошлого века существенно возросло число известных источников, и современные исследователи пришли к выводу о том, что Ньютон и Лейбниц совершили свои открытия независимо друг от друга. В вопросе, чей вклад в возникновение математического анализа был решающим, историки математики склоняются либо к компромиссной точке зрения о том, что это произошло в результате работы многих поколений математиков, либо же признают решающей роль учителя Ньютона Исаака Барроу (1630—1677), чьи труды были известны также Лейбницу.

O que é АСТРОНОМИЯ И АСТРОФИЗИКА: ЭПОХА НЬЮТОНА - definição, significado, conceito